Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2022 

Gell-Mann–Low Criticality in Neural Networks

Gell-Mann–Low Criticality in Neural Networks

Criticality is deeply related to optimal computational capacity. The lack of a renormalized theory of critical brain dynamics, however, so far limits insights into this form of biological information processing to mean-field results. These methods neglect a key feature of critical systems: the inter...

More

Saved in:
Personal Name(s): Tiberi, Lorenzo (Corresponding author)
Stapmanns, Jonas / Kühn, Tobias / Luu, Thomas / Dahmen, David / Helias, Moritz
Contributing Institute: Computational and Systems Neuroscience; INM-6
Theorie der starken Wechselwirkung; IKP-3
Theorie der Starken Wechselwirkung; IAS-4
Theoretical Neuroscience; IAS-6
Jara-Institut Brain structure-function relationships; INM-10
Published in: Physical review letters, 128 (2022) 16, S. 168301
Imprint: College Park, Md. APS 2022
DOI: 10.1103/PhysRevLett.128.168301
Document Type: Journal Article
Research Program: Transparent Deep Learning with Renormalized Flows
Human Brain Project Specific Grant Agreement 3
Neuroscientific Foundations
Link: OpenAccess
Publikationsportal JuSER
Please use the identifier: http://dx.doi.org/10.1103/PhysRevLett.128.168301 in citations.
Please use the identifier: http://hdl.handle.net/2128/32544 in citations.

  • Description
  • Staff View
LEADER 06566nam a2200937 a 4500
001 911044
005 20230110132135.0
024 7 |a 10.1103/PhysRevLett.128.168301  |2 doi 
024 7 |a 0031-9007  |2 ISSN 
024 7 |a 1079-7114  |2 ISSN 
024 7 |a 1092-0145  |2 ISSN 
024 7 |a 2128/32544  |2 Handle 
024 7 |a 35522522  |2 pmid 
024 7 |a WOS:000804565600003  |2 WOS 
037 |a FZJ-2022-04370 
082 |a 530 
100 1 |a Tiberi, Lorenzo  |0 P:(DE-Juel1)177789  |b 0  |e Corresponding author  |u fzj 
245 |a Gell-Mann–Low Criticality in Neural Networks 
260 |a College Park, Md.  |c 2022  |b APS 
520 |a Criticality is deeply related to optimal computational capacity. The lack of a renormalized theory of critical brain dynamics, however, so far limits insights into this form of biological information processing to mean-field results. These methods neglect a key feature of critical systems: the interaction between degrees of freedom across all length scales, required for complex nonlinear computation. We present a renormalized theory of a prototypical neural field theory, the stochastic Wilson-Cowan equation. We compute the flow of couplings, which parametrize interactions on increasing length scales. Despite similarities with the Kardar-Parisi-Zhang model, the theory is of a Gell-Mann–Low type, the archetypal form of a renormalizable quantum field theory. Here, nonlinear couplings vanish, flowing towards the Gaussian fixed point, but logarithmically slowly, thus remaining effective on most scales. We show this critical structure of interactions to implement a desirable trade-off between linearity, optimal for information storage, and nonlinearity, required for computation. 
588 |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de 
700 1 |a Stapmanns, Jonas  |0 P:(DE-Juel1)171475  |b 1 
700 1 |a Kühn, Tobias  |0 P:(DE-Juel1)164473  |b 2 
700 1 |a Luu, Thomas  |0 P:(DE-Juel1)159481  |b 3 
700 1 |a Dahmen, David  |0 P:(DE-Juel1)156459  |b 4 
700 1 |a Helias, Moritz  |0 P:(DE-Juel1)144806  |b 5 
773 |a 10.1103/PhysRevLett.128.168301  |g Vol. 128, no. 16, p. 168301  |0 PERI:(DE-600)1472655-5  |n 16  |p 168301  |t Physical review letters  |v 128  |y 2022  |x 0031-9007 
856 4 |u http://juser.fz-juelich.de/record/911044/files/PhysRevLett.128.168301.pdf  |y OpenAccess 
909 C O |o oai:juser.fz-juelich.de:911044  |p openaire  |p open_access  |p driver  |p VDB  |p ec_fundedresources  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)177789 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)171475 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)159481 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 4  |6 P:(DE-Juel1)156459 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 5  |6 P:(DE-Juel1)144806 
913 1 |a DE-HGF  |b Key Technologies  |l Natural, Artificial and Cognitive Information Processing  |1 G:(DE-HGF)POF4-520  |0 G:(DE-HGF)POF4-523  |3 G:(DE-HGF)POF4  |2 G:(DE-HGF)POF4-500  |4 G:(DE-HGF)POF  |v Neuromorphic Computing and Network Dynamics  |9 G:(DE-HGF)POF4-5231  |x 0 
914 1 |y 2022 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS  |d 2021-02-02 
915 |a DBCoverage  |0 StatID:(DE-HGF)0160  |2 StatID  |b Essential Science Indicators  |d 2021-02-02 
915 |a DBCoverage  |0 StatID:(DE-HGF)1230  |2 StatID  |b Current Contents - Electronics and Telecommunications Collection  |d 2021-02-02 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a DBCoverage  |0 StatID:(DE-HGF)0600  |2 StatID  |b Ebsco Academic Search  |d 2021-02-02 
915 |a DBCoverage  |0 StatID:(DE-HGF)1150  |2 StatID  |b Current Contents - Physical, Chemical and Earth Sciences  |d 2021-02-02 
915 |a Peer Review  |0 StatID:(DE-HGF)0030  |2 StatID  |b ASC  |d 2021-02-02 
915 |a WoS  |0 StatID:(DE-HGF)0113  |2 StatID  |b Science Citation Index Expanded  |d 2021-02-02 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection  |d 2021-02-02 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0571  |2 StatID  |b SCOAP3 sponsored Journal  |d 2021-02-02 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b PHYS REV LETT : 2019  |d 2021-02-02 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline  |d 2021-02-02 
915 |a IF >= 5  |0 StatID:(DE-HGF)9905  |2 StatID  |b PHYS REV LETT : 2019  |d 2021-02-02 
915 |a Nationallizenz  |0 StatID:(DE-HGF)0420  |2 StatID  |d 2021-02-02  |w ger 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Clarivate Analytics Master Journal List  |d 2021-02-02 
980 |a journal 
980 |a VDB 
980 |a I:(DE-Juel1)INM-6-20090406 
980 |a I:(DE-Juel1)INM-10-20170113 
980 |a I:(DE-Juel1)IAS-6-20130828 
980 |a I:(DE-Juel1)IAS-4-20090406 
980 |a I:(DE-Juel1)IKP-3-20111104 
980 |a UNRESTRICTED 
980 1 |a FullTexts 
536 |a Transparent Deep Learning with Renormalized Flows  |0 G:(DE-Juel-1)BMBF-01IS19077A  |c BMBF-01IS19077A  |x 2 
536 |a Human Brain Project Specific Grant Agreement 3  |0 G:(EU-Grant)945539  |c 945539  |f H2020-SGA-FETFLAG-HBP-2019  |x 1 
536 |a Neuroscientific Foundations  |0 G:(DE-HGF)POF4-5231  |c POF4-523  |f POF IV  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1673339428_3327  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Computational and Systems Neuroscience; INM-6  |0 I:(DE-Juel1)INM-6-20090406  |l Computational and Systems Neuroscience  |x 0 
920 |k Theorie der starken Wechselwirkung; IKP-3  |0 I:(DE-Juel1)IKP-3-20111104  |l Theorie der starken Wechselwirkung  |x 4 
920 |k Theorie der Starken Wechselwirkung; IAS-4  |0 I:(DE-Juel1)IAS-4-20090406  |l Theorie der Starken Wechselwirkung  |x 3 
920 |k Theoretical Neuroscience; IAS-6  |0 I:(DE-Juel1)IAS-6-20130828  |l Theoretical Neuroscience  |x 2 
920 |k Jara-Institut Brain structure-function relationships; INM-10  |0 I:(DE-Juel1)INM-10-20170113  |l Jara-Institut Brain structure-function relationships  |x 1 
990 |a Tiberi, Lorenzo  |0 P:(DE-Juel1)177789  |b 0  |e Corresponding author  |u fzj 
991 |a Helias, Moritz  |0 P:(DE-Juel1)144806  |b 5 
991 |a Dahmen, David  |0 P:(DE-Juel1)156459  |b 4 
991 |a Luu, Tom  |0 P:(DE-Juel1)159481  |b 3 
991 |a Kühn, Tobias  |0 P:(DE-Juel1)164473  |b 2 
991 |a Stapmanns, Jonas  |0 P:(DE-Juel1)171475  |b 1 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...