Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2018 

Behavioral Context Determines Network State and Variability Dynamics in Monkey Motor Cortex

Behavioral Context Determines Network State and Variability Dynamics in Monkey Motor Cortex

Variability of spiking activity is ubiquitous throughout the brain but little is known about its contextual dependance. Trial-to-trial spike count variability, estimated by the Fano Factor (FF), and within-trial spike time irregularity, quantified by the coefficient of variation (CV), reflect variab...

More

Saved in:
Personal Name(s): Riehle, Alexa (Corresponding author)
Brochier, Thomas / Nawrot, Martin / Grün, Sonja
Contributing Institute: Computational and Systems Neuroscience; INM-6
Jara-Institut Brain structure-function relationships; INM-10
Theoretical Neuroscience; IAS-6
Published in: Frontiers in neural circuits, 12 (2018) S. 52
Imprint: Lausanne Frontiers Research Foundation 2018
PubMed ID: 30050415
DOI: 10.3389/fncir.2018.00052
Document Type: Journal Article
Research Program: Human Brain Project Specific Grant Agreement 2
Human Brain Project Specific Grant Agreement 1
Supercomputing and Modelling for the Human Brain
Brain-inspired multiscale computation in neuromorphic hybrid systems
Connectivity and Activity
The Human Brain Project
Link: Get full text
Get full text
OpenAccess
OpenAccess
Publikationsportal JuSER
Please use the identifier: http://hdl.handle.net/2128/19561 in citations.
Please use the identifier: http://dx.doi.org/10.3389/fncir.2018.00052 in citations.

  • Description
  • Staff View
LEADER 07503nam a2200973 a 4500
001 849575
005 20220930130152.0
024 7 |a 10.3389/fncir.2018.00052  |2 doi 
024 7 |a 2128/19561  |2 Handle 
024 7 |a pmid:30050415  |2 pmid 
024 7 |a WOS:000438522100001  |2 WOS 
024 7 |a altmetric:44924393  |2 altmetric 
037 |a FZJ-2018-03754 
082 |a 610 
100 1 |a Riehle, Alexa  |0 P:(DE-Juel1)172858  |b 0  |e Corresponding author  |u fzj 
245 |a Behavioral Context Determines Network State and Variability Dynamics in Monkey Motor Cortex 
260 |a Lausanne  |c 2018  |b Frontiers Research Foundation 
520 |a Variability of spiking activity is ubiquitous throughout the brain but little is known about its contextual dependance. Trial-to-trial spike count variability, estimated by the Fano Factor (FF), and within-trial spike time irregularity, quantified by the coefficient of variation (CV), reflect variability on long and short time scales, respectively. We co-analyzed FF and the local coefficient of variation (CV2) in monkey motor cortex comparing two behavioral contexts, movement preparation (wait) and execution (movement). We find that the FF significantly decreases from wait to movement, while the CV2 increases. The more regular firing (expressed by a low CV2) during wait is related to an increased power of local field potential (LFP) beta oscillations and phase locking of spikes to these oscillations. In renewal processes, a widely used model for spiking activity under stationary input conditions, both measures are related as FF ≈ CV2. This expectation was met during movement, but not during wait where FF ≫ CV22. Our interpretation is that during movement preparation, ongoing brain processes result in changing network states and thus in high trial-to-trial variability (expressed by a high FF). During movement execution, the network is recruited for performing the stereotyped motor task, resulting in reliable single neuron output. Our interpretation is in the light of recent computational models that generate non-stationary network conditions. 
588 |a Dataset connected to CrossRef 
700 1 |a Brochier, Thomas  |0 P:(DE-HGF)0  |b 1 
700 1 |a Nawrot, Martin  |0 P:(DE-HGF)0  |b 2 
700 1 |a Grün, Sonja  |0 P:(DE-Juel1)144168  |b 3  |u fzj 
773 |a 10.3389/fncir.2018.00052  |g Vol. 12, p. 52  |0 PERI:(DE-600)2452968-0  |p 52  |t Frontiers in neural circuits  |v 12  |y 2018  |x 1662-5110 
856 4 |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-2.pdf 
856 4 |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-3_aggregated.pdf 
856 4 |x icon  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-2.gif?subformat=icon 
856 4 |x icon-1440  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-2.jpg?subformat=icon-1440 
856 4 |x icon-180  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-2.jpg?subformat=icon-180 
856 4 |x icon-640  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-2.jpg?subformat=icon-640 
856 4 |x icon  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-3_aggregated.gif?subformat=icon 
856 4 |x icon-1440  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-3_aggregated.jpg?subformat=icon-1440 
856 4 |x icon-180  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-3_aggregated.jpg?subformat=icon-180 
856 4 |x icon-640  |u http://juser.fz-juelich.de/record/849575/files/2018-0116257-3_aggregated.jpg?subformat=icon-640 
856 4 |y OpenAccess  |u http://juser.fz-juelich.de/record/849575/files/fncir-12-00052.pdf 
856 4 |y OpenAccess  |x icon  |u http://juser.fz-juelich.de/record/849575/files/fncir-12-00052.gif?subformat=icon 
856 4 |y OpenAccess  |x icon-1440  |u http://juser.fz-juelich.de/record/849575/files/fncir-12-00052.jpg?subformat=icon-1440 
856 4 |y OpenAccess  |x icon-180  |u http://juser.fz-juelich.de/record/849575/files/fncir-12-00052.jpg?subformat=icon-180 
856 4 |y OpenAccess  |x icon-640  |u http://juser.fz-juelich.de/record/849575/files/fncir-12-00052.jpg?subformat=icon-640 
856 4 |y OpenAccess  |x pdfa  |u http://juser.fz-juelich.de/record/849575/files/fncir-12-00052.pdf?subformat=pdfa 
909 C O |o oai:juser.fz-juelich.de:849575  |p openaire  |p open_access  |p OpenAPC  |p driver  |p VDB  |p ec_fundedresources  |p openCost  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)172858 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 3  |6 P:(DE-Juel1)144168 
913 1 |a DE-HGF  |b Key Technologies  |l Decoding the Human Brain  |1 G:(DE-HGF)POF3-570  |0 G:(DE-HGF)POF3-571  |2 G:(DE-HGF)POF3-500  |v Connectivity and Activity  |x 0  |4 G:(DE-HGF)POF  |3 G:(DE-HGF)POF3 
914 1 |y 2018 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS 
915 |a Creative Commons Attribution CC BY 4.0  |0 LIC:(DE-HGF)CCBY4  |2 HGFVOC 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b FRONT NEURAL CIRCUIT : 2015 
915 |a DBCoverage  |0 StatID:(DE-HGF)0501  |2 StatID  |b DOAJ Seal 
915 |a DBCoverage  |0 StatID:(DE-HGF)0500  |2 StatID  |b DOAJ 
915 |a WoS  |0 StatID:(DE-HGF)0111  |2 StatID  |b Science Citation Index Expanded 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection 
915 |a IF < 5  |0 StatID:(DE-HGF)9900  |2 StatID 
915 |a OpenAccess  |0 StatID:(DE-HGF)0510  |2 StatID 
915 |a DBCoverage  |0 StatID:(DE-HGF)0310  |2 StatID  |b NCBI Molecular Biology Database 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Thomson Reuters Master Journal List 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)INM-6-20090406 
980 |a I:(DE-Juel1)IAS-6-20130828 
980 |a I:(DE-Juel1)INM-10-20170113 
980 |a APC 
980 1 |a APC 
980 1 |a FullTexts 
536 |a Human Brain Project Specific Grant Agreement 2  |0 G:(EU-Grant)785907  |c 785907  |f H2020-SGA-FETFLAG-HBP-2017  |x 4 
536 |a Human Brain Project Specific Grant Agreement 1  |0 G:(EU-Grant)720270  |c 720270  |f H2020-Adhoc-2014-20  |x 3 
536 |a Supercomputing and Modelling for the Human Brain  |0 G:(DE-Juel1)HGF-SMHB-2013-2017  |c HGF-SMHB-2013-2017  |f SMHB  |x 2 
536 |a Brain-inspired multiscale computation in neuromorphic hybrid systems  |0 G:(EU-Grant)269921  |c 269921  |f FP7-ICT-2009-6  |x 1 
536 |a Connectivity and Activity  |0 G:(DE-HGF)POF3-571  |c POF3-571  |f POF III  |x 0 
536 |a The Human Brain Project  |0 G:(EU-Grant)604102  |c 604102  |f FP7-ICT-2013-FET-F  |x 5 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1533648552_21083  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Computational and Systems Neuroscience; INM-6  |0 I:(DE-Juel1)INM-6-20090406  |l Computational and Systems Neuroscience  |x 0 
920 |k Jara-Institut Brain structure-function relationships; INM-10  |0 I:(DE-Juel1)INM-10-20170113  |l Jara-Institut Brain structure-function relationships  |x 2 
920 |k Theoretical Neuroscience; IAS-6  |0 I:(DE-Juel1)IAS-6-20130828  |l Theoretical Neuroscience  |x 1 
990 |a Riehle, Alexa  |0 P:(DE-Juel1)172858  |b 0  |e Corresponding author  |u fzj 
991 |a Grün, Sonja  |0 P:(DE-Juel1)144168  |b 3  |u fzj 
991 |a Nawrot, Martin  |0 P:(DE-HGF)0  |b 2 
991 |a Brochier, Thomas  |0 P:(DE-HGF)0  |b 1 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...