Skip to content
VuFind
  • 0 Items in e-Shelf (Full)
  • History
  • User Account
  • Logout
  • User Account
  • Help
    • English
    • Deutsch
  • Books & more
  • Articles & more
  • JuSER
Advanced
 
  • Literature Request
  • Cite this
  • Email this
  • Export
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to MARC
    • Export to MARCXML
    • Export to BibTeX
  • Favorites
  • Add to e-Shelf Remove from e-Shelf



QR Code
This title appears in the Scientific Report : 2020 

Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion

Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion

Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swim...

More

Saved in:
Personal Name(s): Clopes, Judit
Gompper, Gerhard (Corresponding author) / Winkler, Roland G. (Corresponding author)
Contributing Institute: Theorie der Weichen Materie und Biophysik; IAS-2
JARA-SOFT; JARA-SOFT
JARA - HPC; JARA-HPC
Theoretische Physik der Lebenden Materie; IBI-5
Published in: Soft matter, 16 (2020) 47, S. 10676 - 10687
Imprint: London Royal Soc. of Chemistry 2020
DOI: 10.1039/D0SM01569E
Document Type: Journal Article
Research Program: Physical Basis of Diseases
Link: Restricted
Published on 2020-10-15. Available in OpenAccess from 2021-10-15.
Publikationsportal JuSER
Please use the identifier: http://hdl.handle.net/2128/26968 in citations.
Please use the identifier: http://dx.doi.org/10.1039/D0SM01569E in citations.

  • Description
  • Staff View
LEADER 06021nam a2200769 a 4500
001 888931
005 20210208142342.0
024 7 |a 10.1039/D0SM01569E  |2 doi 
024 7 |a 1744-683X  |2 ISSN 
024 7 |a 1744-6848  |2 ISSN 
024 7 |a 2128/26968  |2 Handle 
024 7 |a altmetric:92453632  |2 altmetric 
024 7 |a 33089276  |2 pmid 
024 7 |a WOS:000599748700009  |2 WOS 
037 |a FZJ-2020-05330 
082 |a 530 
100 1 |a Clopes, Judit  |0 P:(DE-Juel1)174327  |b 0  |u fzj 
245 |a Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion 
260 |a London  |c 2020  |b Royal Soc. of Chemistry 
520 |a Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers’ rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach—the multiparticle collision dynamics method—is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers’ rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications. 
588 |a Dataset connected to CrossRef 
700 1 |a Gompper, Gerhard  |0 P:(DE-Juel1)130665  |b 1  |e Corresponding author 
700 1 |a Winkler, Roland G.  |0 P:(DE-Juel1)131039  |b 2  |e Corresponding author 
773 |a 10.1039/D0SM01569E  |g Vol. 16, no. 47, p. 10676 - 10687  |0 PERI:(DE-600)2191476-X  |n 47  |p 10676 - 10687  |t Soft matter  |v 16  |y 2020  |x 1744-6848 
856 4 |u http://juser.fz-juelich.de/record/888931/files/d0sm01569e-1.pdf  |y Restricted 
856 4 |y Published on 2020-10-15. Available in OpenAccess from 2021-10-15.  |u http://juser.fz-juelich.de/record/888931/files/D0SM01569E.pdf 
909 C O |o oai:juser.fz-juelich.de:888931  |p openaire  |p open_access  |p VDB  |p driver  |p dnbdelivery 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 0  |6 P:(DE-Juel1)174327 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 1  |6 P:(DE-Juel1)130665 
910 1 |a Forschungszentrum Jülich  |0 I:(DE-588b)5008462-8  |k FZJ  |b 2  |6 P:(DE-Juel1)131039 
913 1 |a DE-HGF  |b Key Technologies  |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences  |1 G:(DE-HGF)POF3-550  |0 G:(DE-HGF)POF3-553  |3 G:(DE-HGF)POF3  |2 G:(DE-HGF)POF3-500  |4 G:(DE-HGF)POF  |v Physical Basis of Diseases  |x 0 
914 1 |y 2020 
915 |a DBCoverage  |0 StatID:(DE-HGF)0200  |2 StatID  |b SCOPUS  |d 2020-09-03 
915 |a DBCoverage  |0 StatID:(DE-HGF)0160  |2 StatID  |b Essential Science Indicators  |d 2020-09-03 
915 |a Embargoed OpenAccess  |0 StatID:(DE-HGF)0530  |2 StatID 
915 |a JCR  |0 StatID:(DE-HGF)0100  |2 StatID  |b SOFT MATTER : 2018  |d 2020-09-03 
915 |a WoS  |0 StatID:(DE-HGF)0113  |2 StatID  |b Science Citation Index Expanded  |d 2020-09-03 
915 |a DBCoverage  |0 StatID:(DE-HGF)0150  |2 StatID  |b Web of Science Core Collection  |d 2020-09-03 
915 |a IF < 5  |0 StatID:(DE-HGF)9900  |2 StatID  |d 2020-09-03 
915 |a Allianz-Lizenz / DFG  |0 StatID:(DE-HGF)0400  |2 StatID  |d 2020-09-03  |w ger 
915 |a DBCoverage  |0 StatID:(DE-HGF)1150  |2 StatID  |b Current Contents - Physical, Chemical and Earth Sciences  |d 2020-09-03 
915 |a National-Konsortium  |0 StatID:(DE-HGF)0430  |2 StatID  |d 2020-09-03  |w ger 
915 |a DBCoverage  |0 StatID:(DE-HGF)0300  |2 StatID  |b Medline  |d 2020-09-03 
915 |a Nationallizenz  |0 StatID:(DE-HGF)0420  |2 StatID  |d 2020-09-03  |w ger 
915 |a DBCoverage  |0 StatID:(DE-HGF)0199  |2 StatID  |b Clarivate Analytics Master Journal List  |d 2020-09-03 
980 |a journal 
980 |a VDB 
980 |a UNRESTRICTED 
980 |a I:(DE-Juel1)IAS-2-20090406 
980 |a I:(DE-Juel1)IBI-5-20200312 
980 |a I:(DE-82)080012_20140620 
980 |a I:(DE-82)080008_20150909 
980 1 |a FullTexts 
536 |a Physical Basis of Diseases  |0 G:(DE-HGF)POF3-553  |c POF3-553  |f POF III  |x 0 
336 |a ARTICLE  |2 BibTeX 
336 |a Journal Article  |b journal  |m journal  |0 PUB:(DE-HGF)16  |s 1611415859_30479  |2 PUB:(DE-HGF) 
336 |a Output Types/Journal article  |2 DataCite 
336 |a article  |2 DRIVER 
336 |a Nanopartikel unedler Metalle (Mg0, Al0, Gd0, Sm0)  |0 0  |2 EndNote 
336 |a JOURNAL_ARTICLE  |2 ORCID 
920 |k Theorie der Weichen Materie und Biophysik; IAS-2  |0 I:(DE-Juel1)IAS-2-20090406  |l Theorie der Weichen Materie und Biophysik  |x 0 
920 |k JARA-SOFT; JARA-SOFT  |0 I:(DE-82)080008_20150909  |l JARA-SOFT  |x 3 
920 |k JARA - HPC; JARA-HPC  |0 I:(DE-82)080012_20140620  |l JARA - HPC  |x 2 
920 |k Theoretische Physik der Lebenden Materie; IBI-5  |0 I:(DE-Juel1)IBI-5-20200312  |l Theoretische Physik der Lebenden Materie  |x 1 
990 |a Clopes, Judit  |0 P:(DE-Juel1)174327  |b 0  |u fzj 
991 |a Winkler, Roland G.  |0 P:(DE-Juel1)131039  |b 2  |e Corresponding author 
991 |a Gompper, Gerhard  |0 P:(DE-Juel1)130665  |b 1  |e Corresponding author 

  • Forschungszentrum Jülich
  • Central Library (ZB)
  • Powered by VuFind 6.1.1
Loading...